CWI

joint work with Prof. Peter Grünwald (group leader)

CWI

Time in meta-analysis

• Accumulation Bias

ter Schure & Grünwald (2019) F1000

- Safe Tests
 Grünwald, de Heide & Koolen (2019) ArXiv
- Nuisance Heterogeneity
 [new]

Time breaks the assumption of fully random sampling / exchangeability when:

.

Study chronology matters

→ The occurrence of a replication – or generally: later studies in a series – might be more probable for promising than for disappointing initial study results.

Study chronology matters

→ The occurrence of a replication – or generally: later studies in a series – might be more probable for promising than for disappointing initial study results.

Hence: conditioned on the availability of a replication or series,

the included results are biased, and the assumed sampling distributions are invalid.

Study chronology matters

→ The occurrence of a replication – or generally: later studies in a series – might be more probable for promising than for disappointing initial study results.

Meta-analysis timing matters

→ The occurrence of a meta-analysis might be more probable after the completion of a convincingly positive than after an inconclusive trial.

Hence: conditioned on the availability of a replication or series,

the included results are biased, and the assumed sampling distributions are invalid.

Study chronology matters

→ The occurrence of a replication – or generally: later studies in a series – might be more probable for promising than for disappointing initial study results.

Meta-analysis timing matters

→ The occurrence of a meta-analysis might be more probable after the completion of a convincingly positive than after an inconclusive trial.

Hence: conditioned on the availability of a replication or series, or conditioned on the availability of a meta-analysis, the included results are biased, and the assumed sampling distributions are invalid.

e . e

CWI

Accumulation Bias

CWI

Accumulation Bias

An Accumulation Bias process breaks the sampling distributions for:

Testing with p-values

 ter Schure, J. & Grünwald, P. (2019)
 Accumulation Bias in meta-analysis: the need to consider *time* in error control [version 1; peer review: 2 approved]. *F1000Research*, 8:962

CWI

Example Accumulation Bias process

Gold Rush

CWI

Accumulation Bias

An Accumulation Bias process breaks the sampling distributions for:

Testing with p-values

 ter Schure, J. & Grünwald, P. (2019)
 Accumulation Bias in meta-analysis: the need to consider *time* in error control [version 1; peer review: 2 approved]. *F1000Research*, 8:962

CWI

Accumulation Bias

An Accumulation Bias process breaks the sampling distributions for:

Testing with p-values

 ter Schure, J. & Grünwald, P. (2019)
 Accumulation Bias in meta-analysis: the need to consider *time* in error control [version 1; peer review: 2 approved]. *F1000Research*, 8:962

Estimation with confidence intervals

CWI

Accumulation Bias

An Accumulation Bias process (or accumulating data in general) breaks the sampling distributions for:

Testing with p-values

 ter Schure, J. & Grünwald, P. (2019)
 Accumulation Bias in meta-analysis: the need to consider *time* in error control [version 1; peer review: 2 approved]. *F1000Research*, 8:962

Estimation with confidence intervals

 Pace, L., & Salvan, A. (2019)
 Likelihood, Replicability and Robbins' Confidence Sequences. International Statistical Review.

Accumulation Bias

An Accumulation Bias process (or accumulating data in general) breaks the sampling distributions for:

This talk

CWI

Testing with p-values

 ter Schure, J. & Grünwald, P. (2019)
 Accumulation Bias in meta-analysis: the need to consider time in error control [version 1; peer review: 2 approved]. F1000Research, 8:962

Estimation with confidence intervals

 Pace, L., & Salvan, A. (2019)
 Likelihood, Replicability and Robbins' Confidence Sequences. International Statistical Review.

CWI

$$X_1, X_2, X_3, \dots, X_{t-1}, X_t$$

CWI

So instead of ignoring *time* build it into our statistical analyses: martingales

 $LR_{10}^{(1)},$

CWI

CWI

CWI

CWI

CWI

CWI

So instead of ignoring *time* build it into our statistical analyses: martingales

$$\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10}^{(t)} \, \big| \, \mathbf{L} \mathbf{R}_{10}^{(t-1)} \right] = \mathbf{L} \mathbf{R}_{10}^{(t-1)}$$

CWI

So instead of ignoring *time* build it into our statistical analyses: martingales

So instead of ignoring *time* build it into our statistical analyses: martingales

$$\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10}^{(t)} \, \big| \, \mathbf{L} \mathbf{R}_{10}^{(t-1)} \right] = \mathbf{L} \mathbf{R}_{10}^{(t-1)}$$

So instead of ignoring *time* build it into our statistical analyses: martingales

.

$$\mathbf{E}_{p_0}\left[\mathbf{L}\mathbf{R}_{10}^{(t)} \,\middle|\, \mathbf{L}\mathbf{R}_{10}^{(t-1)}\right] = \mathbf{L}\mathbf{R}_{10}^{(t-1)}$$

$$\begin{split} \mathbf{E}_{p_0} \left[\frac{p_1(X_1, X_2, \dots, X_t)}{p_0(X_1, X_2, \dots, X_t)} \middle| \frac{p_1(X_1, X_2, \dots, X_{t-1})}{p_0(X_1, X_2, \dots, X_{t-1})} \right] \\ &= \frac{p_1(X_1, X_2, \dots, X_{t-1})}{p_0(X_1, X_2, \dots, X_{t-1})} \cdot \mathbf{E}_{p_0} \left[\frac{p_1(X_t)}{p_0(X_t)} \right] \\ &= \frac{p_1(X_1, X_2, \dots, X_{t-1})}{p_0(X_1, X_2, \dots, X_{t-1})} \end{split}$$

So instead of ignoring *time* build it into our statistical analyses: martingales

.

$$\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10}^{(t)} \, \big| \, \mathbf{L} \mathbf{R}_{10}^{(t-1)} \right] = \mathbf{L} \mathbf{R}_{10}^{(t-1)}$$

$$\begin{aligned} \mathbf{E}_{p_0} \left[\frac{p_1(X_1, X_2, \dots, X_t)}{p_0(X_1, X_2, \dots, X_t)} \middle| \frac{p_1(X_1, X_2, \dots, X_{t-1})}{p_0(X_1, X_2, \dots, X_{t-1})} \right] \\ &= \frac{p_1(X_1, X_2, \dots, X_{t-1})}{p_0(X_1, X_2, \dots, X_{t-1})} \cdot \mathbf{E}_{p_0} \left[\frac{p_1(X_t)}{p_0(X_t)} \right] \\ &= \frac{p_1(X_1, X_2, \dots, X_{t-1})}{p_0(X_1, X_2, \dots, X_{t-1})} \end{aligned}$$

since

$$\mathbf{E}_{p_0}\left[\frac{p_1(X_t)}{p_0(X_t)}\right] = \int_x p_0(x)\frac{p_1(x)}{p_0(x)}dx = \int_x p_1(x)dx = 1.$$

CWI

Test martingales:control type-I error

reject
$$\mathscr{H}_0$$
 if $\mathbf{LR}_{10}^{(t)} > 20$ for $\alpha = 0.05$ error control

<u>Universal bound over time (Ville's inequality):</u>

$$\mathbf{P}_{p_0}\left[\mathbf{LR}_{10}^{(t)} \ge \frac{1}{\alpha} \quad \text{for some } t\right] \le \alpha$$

Test martingales: control type-I error

Shafer, G., Shen, A., Vereshchagin, N., & Vovk, V. (2011)
 Test martingales, Bayes factors and p-values. *Statistical Science*, 26(1), 84-101.

reject \mathcal{H}_0

CWI

if
$$LR_{10}^{(t)} > 20$$

for $\alpha = 0.05$ error control

<u>Universal bound over time (Ville's inequality):</u>

$$\mathbf{P}_{p_0}\left[\mathbf{LR}_{10}^{(t)} \ge \frac{1}{\alpha} \quad \text{for some } t\right] \le \alpha$$

CWI

Test martingales:control type-I error

.

A simple vs simple likelihood ratio:

$$\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10}^{(t)} \, \middle| \, \mathbf{L} \mathbf{R}_{10}^{(t-1)} \right] = \mathbf{L} \mathbf{R}_{10}^{(t-1)} \cdot \mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10_t} \right]$$

with $\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10_t} \right] = 1$

<u>Universal bound over time (Ville's inequality):</u>

$$\mathbf{P}_{p_0}\left[\mathbf{LR}_{10}^{(t)} \ge \frac{1}{\alpha} \quad \text{for some } t\right] \le \alpha$$

CWI

Safe Tests:

control type-l error

.

Construct an **S** such that:

Universal bound over time (Ville's inequality):

for all
$$p_{\theta_0} \in \mathscr{H}_0$$

 $\mathbf{P}_{p_{\theta_0}} \left[S^{(t)} \ge \frac{1}{\alpha} \text{ for some } t \right] \le \alpha$

CWI

Test martingales:control type-I error

.

A simple vs simple likelihood ratio:

$$\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10}^{(t)} \, \middle| \, \mathbf{L} \mathbf{R}_{10}^{(t-1)} \right] = \mathbf{L} \mathbf{R}_{10}^{(t-1)} \cdot \mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10_t} \right]$$

with $\mathbf{E}_{p_0} \left[\mathbf{L} \mathbf{R}_{10_t} \right] = 1$

<u>Universal bound over time (Ville's inequality):</u>

$$\mathbf{P}_{p_0}\left[\mathbf{LR}_{10}^{(t)} \ge \frac{1}{\alpha} \quad \text{for some } t\right] \le \alpha$$

Safe Tests:	control type-l error
Construct an S such that:	
$\mathbf{E}_{p_{\theta_0}} \begin{bmatrix} S^{(t)} & S^{(t-1)} \end{bmatrix} = for all p$	$ S^{(t-1)} \cdot \mathbf{F}_{p_{\theta_0}} [S^{(t)}] $ $ \mathbf{F}_{\theta_0} \in \mathscr{H}_0 \mathbf{F}_{p_{\theta_0}} [S^{(t)}] = 1 $
<u>Universal bound <mark>over time</mark> (Vi</u>	<u>lle's inequality):</u>
for all $p_{\theta_0} \in \mathscr{H}_0$	
$\mathbf{P}_{p_{\theta_0}} \left[S^{(t)} \ge \frac{1}{\alpha} \right]$	$\left[for some t \right] \leq \alpha$

CWI

Safe Tests:

control type-I error

.

Construct an **S** such that:

$$S^{(t)} = S_1 \cdot S_2 \cdot \ldots \cdot S_t$$

for all $p_{\theta_0} \in \mathscr{H}_0$ $\mathbf{F}_{p_{\theta_0}}[S_t] = 1$

CWI

Safe Tests:

control type-I error

.

Construct an **S** such that:

$$\begin{split} S^{(t)} &= S_1 \cdot S_2 \cdot \ldots \cdot S_t \\ \text{for all} \quad p_{\theta_0} \in \mathscr{H}_0 \quad \mathbf{F}_{p_{\theta_0}} [S_t] \leq 1 \end{split}$$

Example: test of two proportions

Each study result consists of a contingency table:

	\mathcal{Y}	n''	
	0	1	sum
a	n_{a0}	n_{a1}	n_a
<i>b</i>	n_{b0}	n_{b1}	n_b
sum	n_0	n_1	n

Example: test of two proportions

 $\mathcal{H}_0 = \{P_{\theta_0} : \theta_0 \in [0, 1]\}, \text{ with } P_{\theta_0} = \text{Bernoulli}(\theta_0)$

$$p_{\theta_0}(y^n) = \theta_0^{n_1} (1 - \theta_0)^{n_0}.$$

Example: test of two proportions

 $\mathcal{H}_0 = \{P_{\theta_0} : \theta_0 \in [0, 1]\}, \text{ with } P_{\theta_0} = \text{Bernoulli}(\theta_0)$

$$p_{\theta_0}(y^n) = \theta_0^{n_1} (1 - \theta_0)^{n_0}.$$

$$\mathcal{H}_1 = \{ P_{\theta_1} = P_{\theta_a, \theta_b} : (\theta_a, \theta_b) \in \Theta_1; \theta_a \neq \theta_b \}, \ \Theta_1 = [0, 1]^2,$$

$$p_{\theta_1}(y^n | x^n) = \theta_a^{n_{a1}} (1 - \theta_a)^{n_{a0}} \theta_b^{n_{b1}} (1 - \theta_b)^{n_{b0}}.$$

CWI

Example: test of two proportions

$$\begin{aligned} \theta_0 \in [0, 1] \\ (\theta_a, \theta_b) \in \Theta_1' \qquad \text{with } \theta_b = \theta_a + \delta \end{aligned}$$

. . .

CWI

Example: test of two proportions

for all $p_{\theta_0} \in \mathscr{H}_0$ $\mathbf{E}_{p_{\theta_0}} \left[S^*(Y^n) \right] \leq 1$ (25)

CWI

Nuisance Heterogeneity

CWI

Nuisance Heterogeneity

Each study consists of a contingency table:

\mathcal{H}_{0} :			$ heta_{0,1}$					$\theta_{0,2}$				$\theta_{0,3}$
0			0.3					0.7				0.6
	0	1	sum			0	1	sum		0	1	sum
a	n_{a0}	n_{a1}	n_a	6	ı	n_{a0}	n_{a1}	n_a	a	n_{a0}	n_{a1}	n_a
b	n_{b0}	n_{b1}	n_b	ł	b	n_{b0}	n_{b1}	n_b	b	n_{b0}	n_{b1}	n_b
sum	n_0	n_1	n	su	m	n_0	n_1	n	sum	n_0	n_1	n

Testing under Nuisance Heterogeneity

for all
$$p_{\theta_0} \in \mathscr{H}_0$$
 $\mathbf{E}_{p_{\theta_0}}[S_t] \le 1$
 $S^{(t)} = S_1 \cdot S_2 \cdot \ldots \cdot S_t$

. . . .

so for all
$$p_{\theta_{0,1}}, p_{\theta_{0,2}}, p_{\theta_{0,3}}, \dots \in \mathcal{H}_0$$

$$\mathbf{P}_{p_{\theta_{0,1}}, p_{\theta_{0,2}}, p_{\theta_{0,3}}, \dots} \left[S^{(t)} \ge \frac{1}{\alpha} \text{ for some } t \right] \le \alpha$$

So why do we perform replications?

So why do we perform replications?

 → To collect more evidence on whether the effect exists at all?
 → To combine that evidence with evidence already available?

So why do we perform replications?

 → To collect more evidence on whether the effect exists at all?
 → To combine that evidence with evidence already available?
 Need to take into account time!

So why do we perform replications?

 → To collect more evidence on whether the effect exists at all?
 → To combine that evidence with evidence already available?
 Need to take into account time!
 → Before modeling any heterogeneity, we need to test *a global null hypothesis* of zero effect in all studies.

Global Null testing under *Nuisance Heterogeneity*

Heterogeneity under \mathscr{H}_0

.

	Parameter of interest	Nuisance parameter
Fixed-effect meta-analysis	no	no
Random-effect meta-analysis	yes	no
Safe Tests	no	yes

Global Null testing under *Nuisance Heterogeneity*

Heterogeneity under \mathscr{H}_0

	Parameter of interest	Nuisance parameter
Fixed-effect meta-analysis	no	no
Random-effect meta-analysis	yes	no
Safe Tests	no	yes

We do not argue against random-effects models for estimation, but we do argue against using them for testing!

• Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011) Introduction to meta-analysis. John Wiley & Sons.

83

Chapter 13: Fixed-Effect Versus Random-Effects Models

THE NULL HYPOTHESIS

Often, after computing a summary effect, researchers perform a test of the null hypothesis. Under the fixed-effect model the null hypothesis being tested is that there is zero effect in *every study*. Under the random-effects model the null hypothesis being tested is that the *mean effect* is zero. Although some may treat these hypotheses as interchangeable, they are in fact different, and it is imperative to choose the test that is appropriate to the inference a researcher wishes to make.

• Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011) Introduction to meta-analysis. John Wiley & Sons.

83

Chapter 13: Fixed-Effect Versus Random-Effects Models

THE NULL HYPOTHESIS

Often, after computing a summary effect, researchers perform a test of the null hypothesis. Under the fixed-effect model the null hypothesis being tested is that there is zero effect in *every study*. Under the random-effects model the null hypothesis being tested is that the *mean effect* is zero. Although some may treat these hypotheses as interchangeable, they are in fact different, and it is imperative to choose the test that is appropriate to the inference a researcher wishes to make.

	Heterogeneity under \mathscr{H}_{0}			
	Parameter of interest	Nuisance parameter		
Fixed-effect meta-analysis	no	no		
Random-effect meta-analysis	yes	no		
Safe Tests	no	yes		

• Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011) Introduction to meta-analysis. John Wiley & Sons.

Chapter 13: Fixed-Effect Versus Random-Effects Models

THE NULL HYPOTHESIS

Often, after computing a summary effect, researchers perform a test of the null hypothesis. Under the fixed-effect model the null hypothesis being tested is that there is zero effect in *every study*. Under the random-effects model the null hypothesis being tested is that the *mean effect* is zero. Although some may treat these hypotheses as interchangeable, they are in fact different, and it is imperative to choose the test that is appropriate to the inference a researcher wishes to make.

The insistence to do random-effects model *tests* has delayed standards of

sequential meta-analysis to update systematic reviews.

83

• Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2011) Introduction to meta-analysis. John Wiley & Sons.

83

Chapter 13: Fixed-Effect Versus Random-Effects Models

THE NULL HYPOTHESIS

Often, after computing a summary effect, researchers perform a test of the null hypothesis. Under the fixed-effect model the null hypothesis being tested is that there is zero effect in *every study*. Under the random-effects model the null hypothesis being tested is that the *mean effect* is zero. Although some may treat these hypotheses as interchangeable, they are in fact different, and it is imperative to choose the test that is appropriate to the inference a researcher wishes to make.

	Heterogeneity under \mathscr{H}_{0}			
	Parameter of interest	Nuisance parameter		
Fixed-effect meta-analysis	no	no		
Random-effect meta-analysis	yes	no		
Safe Tests	no	yes		

Testing global null over time, but allowing for *Nuisance Heterogeneity*

.

CWI

Testing global null over time, but allowing for *Nuisance Heterogeneity*

. . . .

What about confidence intervals?

Martingale-based confidence intervals: Anytime-Valid

Estimation with confidence intervals

 Howard, S. R., Ramdas, A., McAuliffe, J., & Sekhon, J. (2018) Uniform, nonparametric, non-asymptotic confidence sequences. arXiv preprint arXiv:1810.08240.

CWI

CWI

- ter Schure, J. & Grünwald, P. (2019) Accumulation Bias in meta-analysis: the need to consider time in error control [version 1; peer review: 2 approved]. F1000Research, 8:962 (https://doi.org/10.12688/f1000research.19375.1)
- Grünwald, P., de Heide, R., & Koolen, W. (2019) Safe testing. arXiv preprint arXiv:1906.07801.
- Turner, R. (2019) Safe tests for 2 x 2 contingency tables and the Cochran-Mantel-Haenszel test. *Master Thesis*.

-

—

 \mathbf{CW}

Thank you! Contact me at: schure@cwi.nl

nttp:/

Centrum Wiskunde & Informatica

Safe, Anytime-Valid Inference (SAVI). (May 25-29, 2020 in Eindhoven, Netherlands)

ter Schure, J. & Grünwald, P. (2019) Accumulation Bias in meta-analysis: the need to consider time in error control [version 1; peer review: 2 approved]. F1000Research, 8:962 (https://doi.org/10.12688/f1000research.19375.1)

//stat.cmu.edu/~aramdas/SAVI/savi20.html

- Grünwald, P., de Heide, R., & Koolen, W. (2019) Safe testing. arXiv preprint arXiv:1906.07801.
- Turner, R. (2019) Safe tests for 2 x 2 contingency tables and the Cochran-Mantel-Haenszel test. *Master Thesis*.

-